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Relaxation schemes based on an approximate and incomplete factorization technique (AF) 
are described. These AF schemes allow one to construct a fast multigrid method for solving 
integral equations of the second as well as of the first kind. Novel items are the smoothing 
factors found for integral equations of the first kind and the comparison with similar results 
for equations of the second kind. Application of the MG algorithm shows convergence of a 
second-order accurate panel method to the level of the truncation error within two multigrid 
cycles. 

IN I’KODUCTION 

Most effort going into the application of multigrid techniques seems to be directed 
to solving the sparse systems of difference equations associated with partial 
differential equations. The multigrid technique, however, can also be used advan- 
tageously to solve the nonsparse systems of equations that arise from integral 
equations, as shown in [ 1, 2 1. 

In the present paper we study the application of multigrid techniques to the 
solution of integral equations associated with potential flow problems. This effort tits 
into the larger framework of the development, at NLR, of a next generation 
singularity or “panel” method. A question associated with this development is 
whether singularity methods do have a future, particularly in view of the current 
progress in finite difference methods. Slooff [3] presents several arguments for a 
positive answer to this question, but at the same time presents the rather stringent 
requirement of high computational efficiency. The scope of the present investigation 
is limited to the analysis of multigrid (MG) techniques and the subsequent 
application to some model problems in two dimensions. Various relaxation schemes, 
which are used as smoothing operators in multigridding, are evaluated. For some 
particular geometries, such as an unbounded flat plate and a circular cylinder, this 
smoothing problem is analyzed by the local mode analysis of 141. For more 
complicated geometries, such as an airfoil, it is found that the finite-dimensional 
discrete Fourier transform can be used to define a global smoothing factor which 
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424 OSKAMAND FRAY 

represents an upper bound of the actual convergence factor of the high-frequency 
components of the residual vector. A general multigrid algorithm is described and 
applied to solve the potential flow problem of multicomponent airfoils. 

Before starting the discussion of the integral equations it is important to realize 
that the asymptotic operation counts remain of the order of n* if nothing is done to 
reduce the work associated with the residue evaluations which involve a full matrix 
times vector multiplication. Multigrid methods to lower the computational work 
involved with these residue evaluations are currently being studied at NLR 131. The 
basic concept is to lower the asymptotic operation counts by treating the far field 
connections on a sequence of coarser grids without compromizing the truncation 
error. These aspects of a next generation panel method are, however, outside the 
scope of this paper. 

INTEGRAL EQUATIONS 

Most panel methods use the boundary condition of zero normal velocity on the 
surface of the contour to derive an integral equation for a distribution of surface 
singularity, source or doublet, over the body surface. Let us denote the source and 
doublet strength by 0 and ,u, respectively, and let xP and xq be the positions of the 
points p and q. The normal velocity at the point p induced by distributions of these 
singularities may be represented as 

and 

uf(x~) = $ jP(x,) -i$ $ (In ) rPq I) ds,, 
P 4 

where rPq - - xp - xq and nq is the outward normal, and direction of the doublet axis, at 
the point q. The normal at xP is denoted by nP. The integration variable s is the 
distance measured along the contour. 

Attention is directed to two particular panel methods which may be formulated by 
employing Eqs. (1) and/or (2). The first is the surface source method having an 
unknown source distribution on the body surface and an auxiliary doublet 
distribution of known shape but unknown magnitude, also on the body surface, to 
produce the lift, see 151. The second panel method considered employs Eq. (2) only 
and is called the doublet method, see, e.g., (61. The reason these two methods have 
been employed in the present paper is that they produce quite different integral 
equations, being of the first and second kind for the doublet and source method, 
respectively. 
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To facilitate the discussion of various discretization schemes we rewrite Eq. (2) for 
the particular case of an unbounded flat plate as 

(3) 

where x, c is the distance measured along the plate. 

DISCRETIZATION OF INTEGRAL EQUATIONS 

The aerodynamic influence coefficients are evaluated using a consistent small 
curvature expansion of the integrals that remain after discretization 171. Specifically, 
the profile curve that defines a two-dimensional body is approximated by a piecewise 
quadratic representation and the source and doublet distributions are approximated 
by piecewise linear and quadratic representations, respectively. These choices result 
in aerodynamic influence coefficients (AIC’s) of second-order accuracy in h, where h 
is the panel size. 

Let the doublet representation for the case of an unbounded flat plate be given by 

b(t) = Pi + (dPldt)i(t - tj) + (d2P/dtZ)i f (t - tj)*, I t - ti I < h/2* (4) 

For the purpose of studying the dependency of the smoothing factor on the 
discretization scheme, the derivatives in Eq. (4) have been discretized by 3-point dif- 
ferences 

(&/‘&3i = oli + I- Pi - 1)/2h, (d2P/dC2)i = hi+ 1 - 2Pi + pi- ,1/h’, (5) 

and by 5-point differences, resulting from a continuity requirement of F across panel 
edges, 

and 

(&/&)i=(-Pi+2 + lOPi+ - I%--, +~i-,)/l6h (ha) 

(d2p/dt2)i = (-Pi+2 + 8Pi+ I- 14~i + 8Pi- 1 -Pi -2)/4h2, 

where ,ui is the value of the doublet representation ,LZ at <,., which is the midpoint of 
panel with index i. For the case of the flat plate all panels have equal size h. The 
difference between the 3-point and 5-point representations, ,GmP and FgeP, respec- 
tively, turns out to be 

ilsg --p - F3 -p = (h2/8)(‘3Pl&3)i(t - lJ + (h2/8)(d4PUl&i4)i(t - <i)‘, (7) 
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which is of the same order in h as higher-order terms neglected in Eq. (4). Thus the 3- 
and Spoint differences both result in a doublet representation of third-order accuracy 
in h. Both representations have sufficient continuity at the panel edges such that the 
contributions of the second and third integral in Eq. (3) may be neglected, being not 
larger than the basic truncation error of the first integral in Eq. (3). 

Evaluating Eq. (3) at panel control points, after substituting Eq. (4), results in a 
system of algebraic equations 

i = -CD,..., 00, 

where 

ak = k In 11 + 32k/(2k - 3)(2k + 1)” 1 + i In 1 1 - 8/(4k2 - 1)1, (9) 

or 

a,=~ln~l+16/(4k*-25)~+~ln~l-8/(4k2-1)~ 

+ fk In 11 - 8k/(4k2 + k - 15)l 

+ 2k In 11 + 8k/(4k2 - 4k - 3)l + {k In 11 - 2/(2k + 1)l. (10) 

Equation (9) represents the AIC’s resulting from the 3-point differences in Eq. (5) 
and the AIC’s of Eq. (10) correspond to 5-point differences (Eq. (6b)). 

For the case of a curved contour such as an airfoil, we need a small curvature 
expansion of the integrals as mentioned before. Moreover, we shall take a nonuniform 
panel distribution. The resulting expressions of the AIC’s will not be presented here 
for the sake of brevity. It should be mentioned, however, that the AIC’s of the doublet 
distributions are based on a third-order accurate representation ,L, requiring continuity 
of ,G across panel edges, which involves a generalization of the 5-point differences in 
Eq. (6) to nonuniform panels. 

The resultant linear system of algebraic equations may be written as 

tltll, 

1 aijuj= f. 0 i = 1, 2,..., n + n C) 
j=l 

(11) 

where n is the total number of surface panels and 12, the number of components of a 
multicomponent airfoil. The unknown parameters uj for j = l,..., n + n, denote oj 
(j = 1, 2,..., n), cj (j = l,..., n,), for the source method, where uj is the value of the 
source representation at control point xj and cj is the magnitude of the auxiliary 
doublet distributions of component j. In case of the doublet method uj 
(j = 1,2 ,..., rz + n,) denotes pj (j = 1,2 ,..., n), ,uf (j = l,..., n,), where ,uj is the value 
of the doublet representation at control point xj and ,$ the value of the doublet 
representation at the endpoint of the integration interval of component j. The value of 
the doublet distribution at the beginning of each integration interval is equated to 
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FIG. I. Pressure distribution of 12-percent thick Kirmin-Trefftz profile with 15” traling edge angle; 
discretization error of this solution as function of the number of panels. 

zero without any loss of generality. The ordering of Eqs. (11) is such that the 
diagonal elements a,, of the first n equations express the influence of a parameter ui 
at the control point xi. The last n, equations of system (11) express the Kutta 
conditions at the trailing edges of the airfoil components j (j = l,..., n,.). 

An example solution of the source method applied to a 12-percent thick von 
K&man-Trefftz airfoil with a trailing edge angle of 15 degrees (KTO012) is shown in 
Fig. 1. Second-order convergence of the n-dimensional vector norms of the error in 
the velocity component of this solution is found, see Fig, 1. 

RELAXATION SCHEMES 

The relaxation schemes, also called smoothing operators in MG algorithms, exploit 
the behavior of the kernels of Eqs. (1) and (2), being like l/r and l/r*, respectively, 
where r denotes the distance. This behavior tells us that the high-frequency 
components of the singularity distribution have a short coupling range. Neglecting the 
far field connections between parameters and control points should, therefore, be a 
sound basis for constructing effective smoothing operators. 
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On the basis of this consideration we shall present two basic classes of relaxation 
schemes. The first class of shemes is based on incomplete L U factorization [ 8 ] of the 
approximate system of linear equations that remains after omitting the far field 
connections, resulting in an approximate factorization (AF). The factors L and U of 
the LU factorization are forced to have an extensive zero pattern by omitting the 
nonzero entries which may arise outside of the intended nonzero pattern in the factors 
L and U during factorization. The present AF scheme is different from the incomplete 
factorization of algebraic equations associated with the discretization of partial 
differential equations because there is no need to omit any far field connections in the 
latter. Moreover, the extensive zero pattern in the lower and upper triangular factors 
need not be the same as the zero pattern of the approximate system of linear 
equations that remains after omitting the far field connections, although we have 
chosen these two patterns identical in the present examples. 

A second class of relaxation schemes is based on the direct construction of a 
sparse approximate inverse. We may construct such an inverse if we approximately 
satisfy each individual equation of system (11) in its turn by directly solving a very 
small system of equations, comprising a subset of the entries of the full system, for 
every unknown parameter. These small systems should be chosen such that they 
include the coupling range of high frequencies. Thus we relax each equation 
individually, distributing changes to its neighboring parameters. This second class, 
which we will call natural relaxation schemes (NRS), is also a general technique. An 
example of this technique is given in the next section. 

FOURIER ANALYSIS 

Let a relaxation scheme based on approximate factorization of Eq. (8) be defined 
by 

;< -??,-I 

L akppy=J;.- y akp;;i- 2 akpp: i, (12) 
k=-n, k=-cc k=n,tl 

where the superscript v is the iteration index and fi the right-hand side which is given. 
The pattern of far field connections which are neglected in the approximate equation 
on the left-hand side of Eq. (12) is denoted by the integers k satisfying 1 kl > n,. This 
zero pattern also applies to the factorization. The convergence factor p of the 8 
component, defined in [4 1, of the error in the solution during iteration procedure (12) 
is found to be 

p(B) = 2 F ak cos(k0) 
l/l 

“u 
a, + 2 \‘ ak cos(k8) , 

k-ltn, k:l 
(13) 

where the second summation term is to be omitted for n, = 0. This convergence 
factor as a function of the frequency 8 is shown in Figs. 2 and 3 for n, = 0, 1, 2, and 
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FIG. 2. Convergence factor as function of frequency for doublet method (Eq. (13) with 5-point 
differences); n, = 0 and 1, AF scheme. 

4. It is seen that the convergence of the high frequencies, i.e., 0 > n/2, is of the order 
of lo-* for n, > 1. 

The second relaxation scheme (NRS) for Eq. (8) is based on a sparse inverse Ck 
which is defined by 

Lfk = 0, for lkl > n,, 

- gk, for Ikl <no, 

LOGlotPl LOG ,. I/j) 

-61 I I I 
0.0 0.25 0.50 0.75 1 0.0 0.25 050 0.75 

(14) 

FIG. 3. Convergence factor as function of frequency for doublet method (Eq. (13) with S-point 
differences): n, = 2 and 4, AF scheme. 
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where g, is the solution of 

"a 
x a,gj=6,, 

j= -no 
for i = - n, ,..., It,, (15) 

with k = Ij - iI and 6,, = Kronecker delta. Applying this approximate inverse a;, in a 
residual correction iteration process (see the Appendix) results in an error 
amplification matrix given by I--&. The matrix ,&4, denoted by B, is an infinite 
symmetric Toeplitz matrix because A and A” are infinite symmetric Toeplitz matrices. 
This observation allows one to obtain the convergence factor implied by this NRS 
scheme, similarly to Eq. (13). One finds 

p(B)= 1 -b, - 2 q b,cos(kO) , 
k:L 

(16) 

where b, are the elements of B = Ax. It may be verified that Eqs. (13) and (16) are 
identical for n, = 0. The local smoothing factor p is defined in 141 by 

p= 
n,2F;ae:c R k(e)J* (17) 

It is a significant measure by which the relative merits of Eqs. (13) and (16) may be 
judged for n, > 1. Values of p for n, = 0, 1, 2, 4, and 7 are given in Table I for both 
the 3- and 5-point difference schemes. It may be seen that the smoothing factor of the 
AF scheme is considerably better than that of the NRS scheme. Comparing the 3- 
and 5-point differences shows that in case of the AF scheme the 5-point differences 
result in a lower smoothing factor for n, > 1. 

TABLE 1 

Theoretical Smoothing Factors for Doublet Method with Normal-Velocity Boundary Conditions 

Unbounded flat plate 

3-point 
NRS 

Eq. (16) 

5-point 3-point 
NRS AF 

Eq. (16) Eq. (13) 

5-point 
AF 

Eq. (13) 

5-point 
AF 

Eq. (18) 
n=512 

5-point 
AF 

Eq. (18) 
n= 128 

n, = 0 0.415 0.797 0.415 0.797 0.795 0.790 
n,= I 0.406 0.543 0.163 0.0227 0.0232 0.0249 
n, = 2 0.321 0.421 0.0422 0.025 1 0.0252 0.0255 
n, = 4 0.26 I 0.326 0.0156 0.0102 0.0102 0.0103 
n, = 1 0.202 0.256 0.0052 0.0037 0.0037 0.003 7 

Circ. cylinder 

Note. NRS, Natural relaxation scheme; AF, aprroximate factorization. 
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TABLE II 

Theoretical Smoothing Factors for Source Method 
Applied to Circular Cylinder” 

n= 128 n = 256 n=512 
0.00792 0.00397 0.00199 

’ Equation (18); n, = 0. 

Applying the source or doublet method to the parallel flow around a circular 
cylinder (no lift) results in a symmetric circulant matrix (Eq. (1 I)), which is denoted 
by ck (k = 0, I, 2 ,..., n - l)), provided we use uniform paneling. The convergence 
factor of the errors in the solution during iteration procedure (12) applied to these 
circulants is found to be 

n/2 - 1 

PCei> = c”/2 + 2 y Ck cos(kt9,) co + 2 ? Ck cos(kei) ) (18) 
k=l+n, lil krI 

where the discrete frequencies ei extend over 2ni/n, i = 0, I,..., n/2. Equation (18) 
turns out to be identical to Eq. (13) in the limit of n + co. The smoothing factors 
obtained from Eq. (18) for the doublet method, as shown in Table I, reflect this obser- 
vation. For the source method the smoothing factors obtained from Eq. (18) are given 
in Table II. These factors tend to zero in the limit of n going to infinity, which is 
characteristic for “MG algorithms of the second kind.” 

Although the results obtained above do give valuable insight into the smoothing 
properties of relaxation schemes, the local mode analysis cannot take the effects of 
such practical things as surface slope discontinuities and/or nonuniform paneling of 
the surface into account. An n-dimensional discrete Fourier transform of the residue 
amplification matrix Z-AK (see the Appendix) given by 

G=F(Z-Ax)F-‘, (19a) 

F = f,, = dl/n exp[i2?ckl/n], k, I= 0, 1,. .., n - 1, (19b) 

F-’ = F* (the complex conjugate), (19c) 

is more suitable to study these aspects of the smoothing problem. The matrix 2 in 
Eq. (19a) may either be an actual inverse (NRS) or the implied inverse of an AF 
scheme. Let the row sum of G be defined by 

k = O,..., n - 1. (20) 

This row sum can be shown to be an upper bound of the convergence factor of the 8, 
component of the residue vector in a residual correction iteration process, where 
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TABLE III 

Global Smoothing Factors of Approximate Factorization (AF) for Source and Doublet Methods 
Applied to KT0012 Profile 

Source method Doublet method 
(5.points) 

n 32 64 128 256 32 64 128 256 

n, = 0 1.35 1.36 1.35 1.34 1.75 1.83 1.87 1.89 
n, = 1 0.49 0.54 0.55 0.56 0.29 0.24 0.22 0.23 
n, = 2 0.32 0.36 0.34 0.34 0.24 0.23 0.22 0.22 
II, = 4 0.19 0.23 0.24 0.23 0.20 0.13 0.11 0.10 

9, = 2nk/n occupies the unique part of the frequency range for k = 0, l...., n/2. These 
considerations allow us to define a global smoothing factor ,i by 

I= n/4:ka<Xn,Z PkJ~ (21) , L 

analogous to the local smoothing factor (Eq. (17)). It should be noted, however, that 
this global smoothing factor is only an upper bound of the convergence of the high- 
frequency components because the transformation in Eqs. (19b) and (19~) results in a 
matrix G which is not diagonal, the off-diagonal elements representing the coupling of 
differing frequencies. 

~OG,~t.ik 1 LOG,oI.\ k 1 

-0.1 I 
0.0 0.25 0.50 0.75 10 

I/  ̂ ,I ,,I . I, 
0 

,a, “a ” --wlk T ,nr “a 1 -n 7 
k 

FIG. 4. Row sum of amplification matrix G as function of frequency for source method; KT0012. 
n = 256, n, = 0 and 1. AF scheme. 
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LOG,oI.,4 k 1 

-01: 00 0 25 0.50 0.75 1.0 

(a) n,=O - f$/7 

FIG. 5. Row sum of amplification matrix G as function of frequency for doublet method; KTOO 12, 
n = 256. n, = 0 and 1, AF scheme. 

The global smoothing factor of the AF scheme applied to the source and doublet 
method for the KTO012 profile (see Fig. 1) has been determined using a fast Fourier 
transform algorithm. The particular AF scheme used is characterized as before by the 
far field connections omitted from Eq. (11) and the subsequent zero pattern forced 
onto the incomplete LU factorization of the resultant sparse matrix. These two sets, 
the far field connections aij and the zero pattern, are defined by the pairs of integers 
(i, j) satisfying 

Ii-j1 > n, and ji+j-n- ll>n,, i<n and j<n. (22) 

Table III gives the computed global smoothing factors for n = 32, 64, 128, and 256 
and for n, = 0, 1, 2, and 4. From this table the following conclusions are drawn: The 
smoothing improves as the dimension of the nonzero pattern n, is increased. There is 
no qualitative difference between the source and doublet method, the smoothing 
factors being approximately independent of the number of panels. This is expected of 
the doublet method, but the source method results are qualitatively different from 
those of Table II. Numerical experiments suggest that this qualitative difference is a 
direct result of the surface slope discontinuity at the trailing edge. 

The similarity between the source and doublet method may also be observed from 
the results plotted in Figs. 4 and 5, where the row sum A, is shown as a function of 
frequency for n, = 0 and 1. When n, = 1, a typical smoothing character is observed, 
i.e., the convergence bound lk decreases with increasing frequency. 
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MULTIGRID ALGORITHM 

The multigrid algorithm is described by the following quasi-FORTRAN 77 
program (see also [9]): 

SUBROUTINE MG (i, 1, u’, r’, p, m, q) 
INTEGER p, q 
it(r) = i $ k = 1 

1 IF (k. EQ. 1) GOT0 4 
2 CALL MOOTHING (rk, uk, p) 

rkP’ = RESTRICTION (rk) 
k = k - 1 % uk = 0 % it(k) = m 
GOT0 1 

4 CALL DIRECTSOLVER (r’, u’) 
5 If (k. EQ. 1) RETURN 

k=k+ 1 
6uk = PROLONGATION (Us-‘) 
rk=rk-Akduk $ uk=uk+hk 

CALL SMOOTHING (rk, uk, q) 
it(k) = it(k) - 1 
IF(it(k). EQ. zero) GOT0 5 
GOT0 2 
END ‘OF MG’ 
SUBROUTINE SMOOTHING (rk, uk, pq) 
INTEGER pq 
DOlI=l,pq 
6uk = RELAXATION SCHEME (rk) 
rk=rk-Ak8uk $ u~=u~+-&~ 

1 CONTINUE 
RETURN % END ‘OF SMOOTHING’ 

One call to subroutine MG (i, 1, u’, r’,p, m, q) performs i iterations of the basic 
multigrid cycle, where 1 is the number of levels, k (= I,..., l), u’ is the initial solution 
at level 1 (taken equal to zero in the present examples), and r’ is the corresponding 
residue at level 1. The parameters p, q, and m specify the multigrid strategy, m being 
the number of times the coarse level correction is entered consecutively. 

The only operators that remain to complete the description of this MG algorithm 
are the restriction, prolongation, and coarse level equations Ak. 

Let a panel distribution on level 1 be denoted by hi (i = l,..., n’), where h is the 
panel length and nr the number of panels. Define the coarse levels recursively by 

nk-l=l k 
7n and , hk-’ = hk 

zi-, + h:i (i = l,..., nk-‘). 
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Let the restriction operator Rt (i= l,..., nk-’ + n,; j= I,..., nk + n,) and the 
prolongation P: (i = l,..., nk + n,;j= l,..., nk-’ + n,) be defined by 

Rt. = h;/hf-‘, for j= l,..., nk with i = IFIX((j + 1)/2), (23a) 

R;.= 1, for j = nk + l,..., nk + n, with i = j - nk-‘, (23b) 
Pfj= 1, for i = l,..., nk with j = IFIX((i + 1)/2), (23~) 

Pf+ 1, for i=nk+ l,...,nk+n, with j==-nh-‘, (23d) 
Rt = PL = 0, for all other pairs of integers (i, j). (234 

If we let the fine level equations be given by Eq. (11) and be denoted by A’, then 
we may define the coarse level equations recursively by [IO] 

Ak-1 =RkAkpk 
> (24) 

which choice has been motivated by the results of Wesseling [ 111, who found the 
Galerkin coarse grid approximation (Eq. (24)) to be better than coarse grid 
discretization of the continuous problem. 

L, (RESIDUE) 

KT001’2 PROFILE 

INCIDENCE m= 200 

FINEST LELEL n=32 

NO. OF LEVELS 1~2 

p=l.q=l. mxl 

SOLID LINE RELAXATION 

DASHED LINE COARSE 

LEVEL CORRECTION 

--NO. OF FINE LEVEL R&DUE EVALUATIONS 

FIG. 6. Convergence history of MC algorithm; 2 levels, source method, AF scheme. 
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MULTIGRID CONVERGENCE 

In this section we illustrate the convergence characteristics of the MG algorithm 
described above by applying it to a number of potential flow problems, restricting 
ourselves to the source method and the AF scheme. 

The first example pertains to the KTOO12 profile, shown in Fig. 1, placed in a 
uniform flow and at an angle of attack of 20 degrees. The AF scheme used is charac- 
terized by the logical expression (22). The convergence history, the norm L, of the 
residue as a function of the number of tine grid residue evaluations, is shown in 
Fig. 6, where we have chosen n = 32, 1= 2, p = 1, q = 1, m = 1. Here we have 
defined 

L&‘) = llml,lll~~@ = O)ll,~ (25) 

being the ratio of the maximum norm of the curent (v) residual vector Y’ and the 
maximum norm of the initial (v = 0) residue, i.e., the right-hand side of Eq. (11). The 
observed convergence factor in Fig. 6 is about twice as good as the global smoothing 
factor which represents an upper bound of the convergence factor of the high 
frequencies obtained from a one-level analysis. These findings indicate that h is a 
rather conservative estimate, although it is very realistic with respect to the effect of 
the nonzero pattern n,. 

L, (RESIDUEI 

KT0012 PROFILE 

INCIDENCE 1t=20° 

1 FINEST LEVEL n=256 

, NO OF LEVELS t=5 

SOLID LINE RELAXATION 

DASHED LINE COARSE 

LEVEL CORRECTION 

LEVEL OF TRUN- 
CATION ERROR 

CLOSED SYMBOLS p=12 

OPEN SYMBOLS 

n,=l 

--Y I 

p=l,q=l. m=l 

_ _ 

-NO OF FINE LEVEL RESIDUE EVALUATIONS 

FIG. 7. Convergence history of MG algorithm; S levels. source method. AF scheme. 
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TABLE IV 

Work Units per 10-l Reduction” in the Residue 
over a Range of Strategies’ 

P 4 m 

0 1 1 
0 2 1 
I 0 1 
I I 1 
1 2 1 
1 2 1 
2 0 1 

Work units 
per digit 

2.7 
2.2 
2.2 
2.2 
2.2 
2.2 
2.0 

P 9 m 

2 I 1 
2 2 1 

0 1 2 
0 1 2 
1 0 2 
1 1 2 

Work units 
per digit 

2.5 
2.3 

4.3 
4.3 
5.3 
3.6 

’ Average values over last 2 MG cycles of a total of 4 MG cycles. 
’ AF smoothing; nrr = 1; KT 0012, a = 20°, n = 245, I = 5, i = 4. 

Increasing the number of levels to 5 (see Fig. 7) does not change the asymptotic 
MG convergence rate, although the initial convergence improves somewhat. Using the 
AF scheme as a classical iteration procedure (Fig. 7), i.e, omitting the coarse level 
corrections, is found to be quite ineffective as should have been expected from the 
Fourier analysis. 

Let us define the computational work associated with one residue evaluation at the 
finest level as one work unit in order to be able to compare various multigrid 
strategies. Results are given in Table IV, indicating costs ranging from 2.0 to 2.7 
work units per 10-l reduction in the maximum norm of the residual vector over a 
range of strategies p, q with m = 1. Convergence to the level of the truncation error is 
obtained within 2 MG cycles. Multigrid strategies with m = 2, i.e., entering the coarse 
level correction two times consecutively, are found to be computationally less 
efficient, see Table IV. 

The second example illustrates the convergence of the MG algorithm when applied 
to the problem of a wing plus flap configuration shown in Fig. 8. The convergence 
history is shown in Fig. 9. It is observed that the AF smoothing is quite effective for 
n, > 1, although we have just repeated the nonzero pattern for single-component 
airfoils to the wing alone and flap alone for (i, j) < n. No zero entries for i > n or 
j > n have been created. This zero pattern, which neglects all connections in the 
matrix between wing and flap for (i, j) < n, results in acceptable AF smoothing for a 
gap of 2.6 percent. In the limit of vanishing gap size for a fixed paneling, however, we 
would, of course, have to take some nonzero entries representing the flap/wing 
connections into account if acceptable AF smoothing is to be retained in this limit; 
this has been confirmed by numerical experiments. These observations clearly lead to 
the requirement that all near field connections have to be taken into account during 
the construction of a particular AF smoothing scheme. 
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FIG. 8. Pressure distribution of NLR 7301 plus 32 percent flap at 6 degrees incidence. 
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-NO. OF FINE LEVEL RESIDUE EVALUATIONS 

FIG. 9. Convergence history of MG algorithm; 5 levels, source method, AF scheme. 
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CONCLUSION 

Approximate factorization (AF) relaxation schemes provide a smoothing 
capability that allows one to construct a fast multigrid method for solving integral 
equations of the second as well as of the first kind. 

The local mode analysis of Brandt (41 is applied for the special cases of an 
unbounded flat plate and circular cylinder and predicts the qualitative difference 
between multigrid problems of the first and second kind, where the former has a 
smoothing factor independent of h and the latter a smoothing factor proportional to 
h. For more realistic geometries having surface slope discontinuities such as airfoils, 
Fourier analysis predicts no qualitative difference between smoothing factors 
obtained with the AF scheme when applied to integral equations of either the first or 
second kind. 

Numerical experiments show that convergence to the level of the truncation error 
of a second-order accurate integral method can be obtained within two MG cycles. 

APPENDIX 

Let a residual correction iterative scheme to solve the matrix equation, Au =A be 
given by 

/ju(v+l) =A;(“), (AlI 
u(L’+I) = u(L.) + &"‘t 11, (A21 
y(L'+ I) = r(l.) _ A &p'C I), 

(A3) 

with the iteration index v (= 0, 1, 2,...). Setting the initial solution U(O) equal to zero 
results in an initial residue r(O) equal to the right-hand side J: The column vector 
8~~“~‘) is the correction to the approximate solution u(“) and x is an approximate 
inverse of A. This inverse is either constructed (NRS scheme) or implied by the AF 
scheme. For the latter case we have x = (LU)) ‘. 

This iterative scheme results in an error amplification matrix M, defined by 

u(vt 1) _ u = M&d”) - u), v = 0, 1) 2 )...) (A4) 

which reads M, = I - &I. The corresponding residue amplification matrix, defined 
by 

#I‘+ 1) = Mrr(“), 1, = 0, 1, 2 )..., (A51 

is equal to M, = I -Ax. In case A and x are either circulant matrices or infinite 
Toeplitz matrices, one finds ,&I = A2 and M, = M,, For a more general matrix A 
resulting from the airfoil problem of Eq. (1 l), we have chosen to analyze the residue 
amplification matrix M,. The choice of the zero pattern (22) in the AF scheme when 
applied to the (n +_n,)-dimensional matrix equation (11) results in an n-dimensional 
matric M, = I - AA. 

581/48/3-9 
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